Supporting K－3 students＇understanding of standard algorithms while working toward fluency

Sybilla Beckmann

Department of Mathematics
University of Georgia
Kansas MTSS Symposium September 2013

In this session . . .

... we will examine some parts of these domains in the Common Core State Standards for Mathematics in grades K-3:

- Counting and Cardinality
- Operations and Algebraic Thinking
- Numbers and Operations in Base Ten

We will focus on ways of fostering understanding while supporting students to move toward fluency.

Counting and Cardinality: Kindergarten

If a child can correctly say the first five counting numbers, "one, two, three, four, five,"
will the child necessarily be able to determine how many blocks there are in this collection?
$\square \quad \square \quad \square \quad \square \quad \square$

Counting and Cardinality: Kindergarten

Child 1:
Child 2:

Child 3:

Child 4:

Counting and Cardinality

The last number word tells how many in all

Teacher:"How many blocks are there?"

Child 1 :

Child 1 :

Teacher: "So how many blocks are there?"
Child 2:

Operations and Algebraic Thinking, K - 5

Summary of the domain

- Meanings of addition and subtraction ($\mathrm{K}-2$),
multiplication and division (3-5)
types of problems these operations solve
- MP1 Make sense of problems and persevere in solving them
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics
- Algebraic properties of the operations; other patterns and rules
- Single-digit additions/related subtractions; single digit multiplications/related divisions;
use of properties in learning them, not rotely memorizing them
- MP7 Look for an make use of structure
- MP8 Look for and express regularity in repeated reasoning

CCSS Table 1: Common types of +- word problems

Result Unknown	Change Unknown	Start Unknown	
Add to	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? $2+3=?$	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? $2+?=5$	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? ? + 3 = 5

Operations and Algebraic Thinking

"Add to" and "take from" word problems

These are "change" problems that involve change over time.
Easier ones start in K, harder ones Grade 1 and up

	Result unknown	Change unknown	Start unknown
Add to	$2+3=?$	$2+?=3$	$?+3=5$
Take from	$5-2=?$	$5-?=3$	$?-2=3$

Operations and Algebraic Thinking

Add to, start unknown

Kwon has some cars. He gets 3 more cars. Now he has 8 cars in all. How many cars did Kwon have before he got more?

Note: students who rely only on keywords may mistakenly add 3 and 8.

Operations and Algebraic Thinking
 "Put together" and "take apart" word problems

These problems are about amounts made up of two distinct parts. Also known as "part-part-whole" problems.
They don't involve change over time.
Easier ones start in K, all types are Grade 1 and up

	Total unknown	Addend unknown	Both addends unknown
Put together/	$3+2=?$	$3+?=5$	$5=0+5$
Take apart			$5=5+0$
			$5-3=?$
		$5=4+4$	
			$5=2+3$
			$5=3+2$

Operations and Algebraic Thinking

 "Compare" word problemsGrade 1 and up

	Difference unknown	Bigger unknown	Smaller unknown
Compare	"how many more?"	"more"	"more"
	wording	wording	wording
Compare	"how many fewer?"	"fewer/less"	"fewer/less"
	wording	wording	wording

Grade 2 and up: two step problems, all types

Compare, bigger unknown, "fewer" wording

Jessica has some cards. Shauntay has 3 fewer cards than Jessica. Shauntay has 12 cards. How many cards does Jessica have?

Note: students who rely only on keywords may mistakenly subtract 3 from 12.

Jessica:

Shauntay:

Links to other learning

- "Start unknown" and "change unknown" "Add to" and "take from" problems are "algebra" problems (as are some other types).
- In "take apart" situations the equal sign can't be viewed as "calculate the answer."

$$
5=2+3
$$

- Coming up: "Take apart" is necessary for level 3 addition strategies that use the associative property.

Your turn: write and discuss +- word problems

Add to	Result unknown	Change unknown	Start unknown
Take from	Result unknown	Change unknown	Start unknown
Put together/	Total	Addend	Both addends
Take apart	unknown	unknown	unknown
Compare	Difference unknown 	Bigger unknown "how many more?" "more" wording wording	Smaller unknown "more" wording "fewer/less" "fewer/less" wording
	"how many fewerding		

Operations and Algebraic Thinking

Levels in single-digit additions and associated subtractions

Progression of numerical strategies in working toward fluency - not just rote memorization of the single-digit facts:

- Level 1: count all (K)
- Level 2: count on, count on from larger, count on to subtract (Grade 1)
- Level 3: derived fact methods, especially methods that work with 10 (Grades 1, 2)

Level 2: Counting on

What is $6+3 ?$

$$
\int^{7 \prime \prime}{ }^{\prime \prime} 8^{\prime \prime} \text { "9" } \text { "so } 6+3=9 "
$$

Working towards counting on

Working towards counting on

Hide them.

Working towards counting on

Ask: How many bugs are there altogether?

Level 2: Applying commutativity to count on from larger

What is $3+6 ?$

$$
\text { "7" "8" "9" } \quad \text { "so } 6+3=9
$$

Level 2: Counting on to subtract

A $7-5=\square$ problem: There were 7 nuts. Then a mouse ate 5 . How many nuts are left? Children can also solve this by counting on from 5:

$$
\begin{array}{llll}
& 6 & 7 & \\
\text { "I took } & \text { away } 5 " & 0 & 0
\end{array} \quad \text { "so } 2 \text { are left" }
$$

This method links subtraction and addition:

$$
7-5=\square \leftrightarrow 5+\square=7
$$

Level 3: Emphasizing grouping by tens

$8+6$

Level 3: Emphasizing grouping by tens

Level 3: Emphasizing grouping by tens

Level 3: Emphasizing grouping by tens

$$
8+6=8+(2+4)=(8+2)+4=14
$$

Level 3 requires breaking numbers apart into partners

$$
\begin{aligned}
& 7 \\
& 7=2+5 \\
& 25 \\
& 7 \\
& 7=3+4
\end{aligned}
$$

Level 3：Emphasizing grouping by tens

13－9

Level 3: Emphasizing grouping by tens

Level 3: Emphasizing grouping by tens

take 9 from 10

Level 3: Emphasizing grouping by tens

take 9 from 10 1 and 3 make 4

Working towards derived methods

Show briefly:

Working towards derived methods

Then hide:

Ask: How many are there?

Your turn: discuss the three levels

- Level 1: count all (K)
- Level 2: count on, count on from larger, count on to subtract (Grade 1)
- Level 3: derived fact methods, especially methods that work with 10 (Grades 1, 2)
Try these methods for and 14-9 and 12-3:
- (Level 2) Count on to find the unknown addend
- (Level 3) Make-a-ten with the unknown addend
- (Level 3) Subtract from ten
- (Level 3) Subtract down to ten first

Discuss why these are prerequisites for Level 3:

- For each number 1 through 9, know the "partner to 10 "
- For each number 11 through 19, know it as a ten and some ones
- For each number 2 through 9, know the ways to decompose it into partners

Number and Operations in Base Ten，K－ 5

Summary of the domain

Representing，comparing，and calculating with numbers in base ten．
－Use strategies based on place value and properties of operations
－Illustrate and explain calculations with representations such as mathematical drawings
－MP2 Reason abstractly and quantitatively
－MP3 Construct viable arguments and critique the reasoning of others
－MP5 Use appropriate tools strategically
－MP6 Attend to precision
－MP7 Look for and make use of structure
－MP8 Look for and express regularity in repeated reasoning
－Work towards fluency with understanding

Understanding 11 through 19 as a ten and some ones

Kindergarten: Numbers 11 through 19 are ten ones and some more ones
Grade 1: Ten ones form a unit of ten

0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0 0 0 0 0 0	住合
14		15		16		17

Some difficulties

Difficulties with spoken number words in English:

- "eleven," "twelve" do not sound like ten and one, ten and two
- "thirteen," "fourteen," etc. reverse the ones and tens
- teen words often sound like decade words: sixteen versus sixty
- "teen" may not be recognized as meaning ten

Difficulties with written numerals:

- 16 looks like "one six" and not like 1 ten and 6 .

Understanding 11 through 19 as a ten and some ones

Layered place value cards

Math drawings to show base ten structure

 MP7 Look for and make use of structure

Learning path for multi digit computation in CCSS

Please see your handout!
Phase 3: Compact methods for fluency
Phase 2: Research-based mathematically-desirable and accessible methods in the middle for understanding and growing fluency
Phase 1: Students' methods elicited for understanding but move rapidly to Phase 2

Strategies, the standard algorithms, and written methods

Fuson, K.C. \& Beckmann, S. (Fall/Winter 2012-02013). Standard algorithms in the Common Core State Standards. National Council of of Supervisors of Mathematics Journal of Mathematics Education Leadership, 14(2), 4-30. www.mathedleadership.org

Please see your handout for examples of written methods that implement the standard addition algorithm and the standard subtraction algorithm. We will look at those in detail, but first ...

Strategies, the standard algorithms, and written methods

Computation strategies - thoughtful approaches; the emphasis is on student sense-making.
These include special strategies for particular problems that may not generalize.

For example:

$$
98+17=98+(2+15)=(98+2)+15=100+15=115
$$

Or:
To multiply 8×15 :
double $15 \rightarrow 30$, double $30 \rightarrow 60$, double $60 \rightarrow 120$

Strategies, the standard algorithms, and written methods

Standard algorithms - for each operation there is a particular mathematical approach that is based on decomposing numbers into base-ten units and applying properties of operations to reduce a calculation to single-digit calculations together with correct place value placement.

$$
\begin{aligned}
456+167 & =(400+50+6)+(100+60+7) \\
& =(400+100)+(50+60)+(6+7) \\
& =(4+1) 100+(5+6) 10+(6+7)
\end{aligned}
$$

Strategies, the standard algorithms, and written methods

To implement a standard algorithm we use a systematic written method for recording the steps of the algorithm.

There are variations in written methods - some are longer because they include extra steps or math drawings.

Over time the longer written methods can be abbreviated to shorter methods that allow students to achieve fluency with the standard algorithm while still being able to understand and explain the method.

Strategies, the standard algorithms, and written methods

In the past there has been an unfortunate dichotomy suggesting that strategy implies understanding and algorithm implies no visual models, no explaining, and no understanding.

In the past, teaching the standard algorithm has too often meant teaching numerical steps rotely and having students memorize steps rather than understand and explain them.

The CCSS clearly do not mean for this to happen!

Add by counting on with tens and ones

A special strategy

Grade 1 numerical work side by side with mathematical drawing

Add tens and ones separately

The standard algorithm

Grade 1 numerical work side by side with a mathematical drawing

Subtraction

Important: no two-digit subtraction involving both tens and ones until it is done with regrouping.

This is so that the error of always subtracting the smaller digit from the larger digit does not take hold.

Understanding and explaining the standard subtraction algorithm

Grade 2

62
-45

Understanding and explaining the standard subtraction algorithm

Grade 2

$$
\begin{array}{rr}
62|||\mid & =0 \\
-45 & 4
\end{array}
$$

Understanding and explaining the standard subtraction algorithm

Grade 2

$$
\begin{aligned}
& \begin{array}{c}
510 \\
62
\end{array}|||l| l l
\end{aligned}
$$

Understanding and explaining the standard subtraction algorithm

Grade 2

Understanding and explaining the standard subtraction algorithm

Grade 2

$$
17
$$

$$
\begin{aligned}
& -45 \quad 4 \quad 5
\end{aligned}
$$

Grade 2: Mathematical drawing to represent 1 hundred as 10 tens

10 tens

1 hundred

1 hundred box (quick drawing to show 1 hundred)

Your turn: Discuss multi digit addition and subtraction

Please see your handout!
Discuss the multi digit addition and subtraction methods

- Notice the advantages that written methods D and E for addition offer
- Notice the advantages of written method A over method B for subtraction

Thank you!

Questions? Comments?

Find me on Twitter at SybillaBeckmann
Join the Mathematics Teaching Community online at https://mathematicsteachingcommunity.math.uga.edu/

Some resources:

- Fuson, K.C. \& Beckmann, S. (Fall/Winter 2012-02013). Standard algorithms in the Common Core State Standards. National Council of of Supervisors of Mathematics Journal of Mathematics Education Leadership, 14(2), 4 - 30. www.mathedleadership.org
- The Progressions for the Common Core State Standards: http://ime.math.arizona.edu/progressions/
- Mathematics for Elementary Teachers by Sybilla Beckmann

Multidigit Addition Methods

Place value drawing for all methods

General methods for 2- and 3-digit numbers

D. 456	E. 456	F.56 456 +167 500	167 110
623	+167	G.11 13 623	
+167			

Multidigit Subtraction Methods
Method A. Ungroup where needed first, then subtract

Method B. Alternate ungrouping and subtracting for each column

Learning Path for Multidigit Computation in CCSS

Bridging for teachers and students
Learning
by coherent learning supports
Path

Phase 3: Compact methods for fluency

Students use any good variation of writing the standard algorithm with no drawing to build fluency. They explain occasionally to retain meanings.
Math Sense-Making

Math Structure \downarrow| Math Drawings |
| :---: |
| Math Explaining |

Phase 2: Research-based mathematically-desirable and accessible methods in the middle for understanding and growing fluency

Students focus on and compare efficient, accurate, and generalizable methods, relating these to visual models and explaining the methods.

They write methods in various ways and discuss the variations.
They may use a helping step method for understanding and/or accuracy.
They choose a method for fluency and begin solving with no drawing.
Math Sense-Making

Math Structure \downarrow| Math Drawings |
| :---: |
| Math Explaining |

Phase 1: Students' methods elicited for understanding but move rapidly to Phase 2

Students develop, discuss, and use efficient, accurate, and generalizable methods and other methods. They use concrete models or drawings that they relate to their written method and explain the reasoning used.

Note. Students may consider problems with special structure (e.g., $98+76$) and devise quick methods for solving such problems. But the major focus must be on general problems and on generalizable methods that focus on single-digit computations (i.e., that are or will generalize to become a variation of writing the standard algorithm).

